Jacobi structures on affine bundles
نویسندگان
چکیده
We study affine Jacobi structures (brackets) on an affine bundle π : A→M , i.e. Jacobi brackets that close on affine functions. We prove that if the rank of A is non-zero, there is a one-to-one correspondence between affine Jacobi structures on A and Lie algebroid structures on the vector bundle A = ⋃ p∈M Aff(Ap,R) of affine functionals. In the case rank A = 0, it is shown that there is a one-to-one correspondence between affine Jacobi structures on A and local Lie algebras on A. Some examples and applications, also for the linear case, are discussed. For a special type of affine Jacobi structures which are canonically exhibited (strongly-affine or affine-homogeneous Jacobi structures) over a real vector space of finite dimension, we describe the leaves of its characteristic foliation as the orbits of an affine representation. These affine Jacobi structures can be viewed as an analog of the Kostant-Arnold-Liouville linear Poisson structure on the dual space of a real finitedimensional Lie algebra. Mathematics Subject Classification (2000): 53D17, 53D05, 81S10.
منابع مشابه
AV-differential geometry: Poisson and Jacobi structures
Based on ideas of W. M. Tulczyjew, a geometric framework for a frame-independent formulation of different problems in analytical mechanics is developed. In this approach affine bundles replace vector bundles of the standard description and functions are replaced by sections of certain affine line bundles called AV-bundles. Categorial constructions for affine and special affine bundles as well a...
متن کاملAffine Jacobi structures on vector and affine bundles
We study affine Jacobi structures on an affine bundle π : A→M . We prove that there is a one-toone correspondence between affine Jacobi structures on A and Lie algebroid structures on the vector bundle A = ⋃ p∈M Aff(Ap,R) of affine functionals. Some examples and applications, also for the linear case, are discussed. For a special type of affine Jacobi structures which are canonically exhibited ...
متن کاملOn characterization of Poisson and Jacobi structures
We characterize Poisson and Jacobi structures by means of complete lifts of the corresponding tensors: the lifts have to be related to canonical structures by morphisms of corresponding vector bundles. Similar results hold for generalized Poisson and Jacobi structures (canonical structures) associated with Lie algebroids and Jacobi algebroids. MSC 2000: 17B62 17B66 53D10 53D17
متن کاملJacobi fields and odular structure of affine manifolds
The connection between Jacobi fields and odular structures of affine manifold is established. It is shown that the Jacobi fields generate the natural geoodular structure of affinely connected manifolds.
متن کاملA New Near Optimal High Gain Controller For The Non-Minimum Phase Affine Nonlinear Systems
In this paper, a new analytical method to find a near-optimal high gain controller for the non-minimum phase affine nonlinear systems is introduced. This controller is derived based on the closed form solution of the Hamilton-Jacobi-Bellman (HJB) equation associated with the cheap control problem. This methodology employs an algebraic equation with parametric coefficients for the systems with s...
متن کامل